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Outline 

•  1. Cryptology: concepts and algorithms 
•  2. Cryptology: protocols 
•  3. Public-Key Infrastructure principles 
•  4. Networking protocols 
•  5. New developments in cryptology 
•  6. Cryptography best practices 
•  7. Hash functions 
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Outline 

•  Block ciphers/stream ciphers/MAC algorithms 
•  Modes of operation and authenticated 

encryption 
•  How to encrypt using RSA 
•  Algorithm: secure design and implementation 
•  Obfuscation 
•  SPAM fighting 



Block ciphers 

•  larger data units: 64…128 bits 
•  memoryless 
•  repeat simple operation (round) many times 
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Block ciphers: Keeloq 
•  Microchip Inc algorithm, designed in the 1980s 
•  Allegedly used in large % of the cars for car locks, 

car alarms 
•  Block cipher with 32-bit blocks, 64-bit keys and 

528 simple rounds 
•  Leaked on the internet early 2007 
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Block ciphers: Keeloq (2) 

[Bogdanov07] Car key = Master key + Car ID 

[Biham-Dunkelman-Indesteeghe-Keller-Preneel07]:  
–  1 hour access to token + 2 days of calculation  

[Eisenbarth-Kasper-Moradi-Paar-Salmasizadeh-Manzuri 
ShalmaniPaar 08] 
–  Side channel attack allows to recover master key in 

hopping mode 

in 2011 cryptographers will drive expensive cars 



3-DES: NIST Spec. Pub. 800-67     
(May 2004)  

•  Single DES abandoned 
•  two-key triple DES: until 2009 (80 bit security) 
•  three-key triple DES: until 2030 (100 bit security) 

DES  Clear  
text 
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Highly vulnerable to a 
related key attack 



AES (2001) 
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•  Block length: 128 bits 
•  Key length: 128-192-256 

bits 
A $ 10M machine that cracks a DES 
key in 1 second would take 149 trillion 
years to crack a 128-bit key 



AES variants (2001) 
•  AES-128 
•  10 rounds  
•  sensitive 

Light weight key schedule, in particular for the 256-bit version 
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•  AES-192 
•  12 rounds  
•  classified 

•  AES-256 
•  14 rounds  

•  secret and top 
secret 



AES implementations:  
efficient/compact 

•  NIST validation list: 1187 implementations (2008: 879) 
http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html 

•  HW: 43 Gbit/s in 130 nm CMOS [‘05] 
•  Intel: new AES instruction: 0.75 cycles/byte [’09-’10] 
•  SW: 7.6 cycles/byte on Core 2 or 110 Mbyte/s  bitsliced 

[Käsper-Schwabe’09] 

•  HW: most compact: 3600 gates 
–  KATAN: 1054, PRESENT: 1570 



AES: security 
•  cryptanalysis: no attack has been found that can 

exploit this structure (in spite of the algebraic 
“attack” [Courtois’02]) 

•  implementation level attack 
–  cache attack precluded by bitsliced implementations 

or by special hardware support 
–  fault attack requires special countermeasures 



AES-256 security  
•  Exhaustive key search on AES-256 takes 2256 encryptions 

–  264: 10 minutes with $ 5M 
–  280: 2 year with $ 5M  
–  2120 : 1 billion years with $ 5B 

•  [Biryukov-Khovratovich’09] related key attack on AES-256 
–  requires 2119 encryptions with 4 related keys, 
–  data & time complexity 2119 << 2256 

•  Why does it work? Very lightweight key schedule 

•  Is AES-256 broken? No, only an academic    
 “weakness” that is easy to fix 

•  No implications on security of AES-128 for encryption 
•  Do not use AES-256 in a hash function construction 



What is a related key attack?  
•  Attacker chooses plaintexts and key difference C 
•  Attacker gets ciphertexts 
•  Task: find the key 
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Should I worry about a related key attack?  
•  Very hard in practice (except some old US banking 

schemes) 
•  If you are vulnerable to a related key attack, you are 

making very bad implementation mistakes 
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•  This is a very powerful attack 
model: if an opponent can 
zeroize 96 key bits of his 
choice (rather than adding a 
value), he can find the key in 
a few seconds 

•  If you are worried, hashing 
the key is an easy fix 
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Related key attacks on AES-256 and 
KASUMI 

[Biryukov-
Khovratovich’09] 
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[Dunkelman-
Keller-Shamir’10] 
Related key 
attack: 4 keys,  
226 data & 232 
time << 2128 



KASUMI (2002) 

•  Widely used in all 3G phones 
•  Present in 40% of GSM phones but not 

yet used 

•  Good news: related key attacks do not 
apply in  in the GSM or 3G context 



KASUMI 
[Dunkelman-Keller-Shamir’09] 

•  Practical related key attack announced in 
December 2009 on the block cipher 
KASUMI used in 3GPP 
–  4 related keys, 226 data, 230 bytes of memory, and 

232 time 
•  It is not possible to carry out this attack in 3G 

(as related keys are not available) 



Synchronous Stream Cipher (SSC) 
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Stream ciphers 

•  historically very important (compact) 
– LFSR-based: A5/1, A5/2,  E0 – practical attacks 

known 
–  software-oriented: RC4 – serious weaknesses 
–  block cipher in CTR or OFB (slower) 

•  today:  
– many broken schemes 
–  exception: SNOW2.0, MUGI 
–  lack of standards and open solutions 
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Open competition for stream ciphers 
http://www.ecrypt.eu.org 

•  run by ECRYPT 
–  high performance in software (32/64-bit): 128-bit key 
–  low-gate count hardware (< 1000 gates): 80-bit key 
–  variants: authenticated encryption 

•  April 2005: 33 submissions 
•  many broken in first year 
•  April 2008: end of competition 
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The eSTREAM Portfolio 
Apr. 2008 (Rev1 Sept. 2008) 

Software Hardware 

HC-128 F-FCSR-H 

Rabbit Grain v1 

Salsa20/12 MICKEY v2 

Sosemanuk Trivium 

(in alphabetical order) 

3-10 cycles per byte 1500..3000 gates 



22 

Performance reference data  
(Pentium M 1.70GHz Model 6/9/5) 

encryption speed (cycles/byte) 

key setup (cycles) 



Low cost hw: throughput versus area 
100 KHz clock 

AES (13) AES (35) 

mCRYPTON-96 (13) 

PRESENT-128 (18) HIGHT (25) 

PRESENT-80 (18) 

TEA (18) 

(technology in multiples of 10 nm) 

MISTY1 (18) 

CLEFIA (9) 

KATAN (18) 

TDEA (9) GRAIN (13) Trivium(13) 

GRAIN[8] (13) Trivium[8](13) 

Enocoro-80[8](18) 

SEA (13) 
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MAC algorithms 

•  EMAC based on AES 
•  HMAC based on MD5/SHA-1 
•  GMAC  
•  UMAC 

•  NIST: 2 standards for authenticated encryption 
–  CCM: CTR  + CBC-MAC  [NIST SP 800-38C] 
–  GCM: CTR + GMAC [NIST SP 800-38C] 
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HMAC based on MDx, SHA 

f1 

f2 

x K2 

K1 

Rounds in f1 Rounds in f2 Data complexity 
MD4 48 48 288 CP & 295 time  
MD5 64 33 of 64 2126 CP 
MD5 64 64 251 CP & 2100 time (RK) 
SHA(-0) 80 80 2109 CP 
SHA-1 80 43 of 80 2154.9 CP 

•  Widely used in SSL/TLS/IPsec  

•  Attacks not yet dramatic 

•  NMAC weaker than HMAC 
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GMAC: polynomial MAC (NIST 
SP 800-38D ‘07 + 3GSM) 

•  keys K1, K2 ∈ GF(2128) 
•  input x: x1, x2, . . . , xt, with xi ∈ GF(2128) 

•  g(x) = K1+ Σi=1
t  xi • (K2)i 

•  in practice: compute K1 = AESK(n)  (CTR mode) 

•  properties: 
–  fast in software and hardware (support from Intel) 
–  not very robust w.r.t. nonce reuse, truncation, MAC 

verifications, due to reuse of K2  (not in 3GSM!) 

–  versions over GF(p) (e.g. Poly1305-AES) seem more robust 
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UMAC RFC 4418 (2006) 

•  key K, k1, k2 .., k256 ∈ GF(232)  (1024 bytes) 
•  input x:  x1, x2, . . . , x256, with xi ∈ GF(232) 
•   g(x) = prfK(h(x)) 

•   h(x) = ( Σi=1
512  (x2i-1 + k2i-1) mod 232  . (x2i + k2i) mod 232 )mod 

264 

•  properties 
–  software performance: 1-2 cycles/byte 
–  forgery probability: 1/230 (provable lower bound) 
–  [Handschuh-Preneel08]  full key recovery with 240 

verification queries 
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How to use cryptographic algorithms 

•  Modes of operation 
•  Padding and error messages 
•  Authenticated encryption 

•  How to encrypt with RSA 
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How NOT to use a block cipher: 
ECB mode 
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An example plaintext 
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Encrypted with substitution and transposition cipher 
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Encrypted with AES in ECB and CBC mode 
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How to use a block cipher: CBC mode  
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CBC mode decryption 
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What if IV is constant?  

AES 

IV 

P1 

C1 

AES AES 

P2’ P3’ 

C2’ C3’ 

Repetition in P results in repetition in C: ⇒ 
information leakage need random and secret IV   
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CBC with incomplete plaintext  (1) 

AES 

IV 

P1 

C1 

AES AES 

P2 P3|| 0000..0 

C2 C3 

1 byte Plaintext length 
in bytes 
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CBC with incomplete plaintext  (2) 

AES-1 

IV 

P1 

C1 

P2 P3|| 1000..0 

C2 C3 

AES-1 AES-1 

+ 1100110011||0000….000  

+ 1100110011||0000….000  

Plaintext length in 
bytes 
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CBC with incomplete plaintext  (3) 

•  If the first 10 bits of P3 are equal to 1100110011 
then after the modification P3’ will be equal to 0 

•  The decryption will then produce an error message 
because the plaintext length field is incorrect 

•  Conclusion: information on 1 byte of P3 can be 
obtained using on average 128 chosen ciphertexts 

•  Protection: random padding or authenticated 
encryption 

P1 P2 P3|| 1000..0 

+ 1100110011||0000….000  

Plaintext length in 
bytes 
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Modes of Operation 
•  CTR mode allows for pipelining 

– Better area/speed trade-off 
•  authentication: E-MAC and CMAC 

– E-MAC is CBC-MAC with extra encryption in last 
block 

– NIST prefers CMAC (was OMAC) 
•  authenticated encryption: 

– most applications need this primitive (ssh, TLS, 
IPsec, …) 

–  for security against chosen ciphertext this is essential 
– NIST solution: GCM (very fast but lacks robustness) 
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Authenticated encryption 
Inefficient solution: encrypt then MAC 
We can do better 

•  IAPM 
•  XECB 
•  OCB 

•  CCM 
•  EAX 
•  CWC 
•  GCM  

Issues: 
•  associated data 
•  parallelizable 
•  on-line 
•  patent-free 
•  provable security 
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Example: CCM: CTR + CBC-MAC 



Public-Key Cryptology 
•  new factorization record in January 2010: 

768 bits 
•  upgrade your RSA-1024 keys by 2010 

•  increased acceptance of ECC 
–   example NSA Suite B in USA 
– Certicom challenge: ECC2K-130: 1 year with 

60 KEURO (a large effort is underway) 
•  progress on pairings leading to more 

efficient protocols 



Attack on ISO 9796-2 [Coron+’09]  
•  History:  

–  ISO 9796-1 (1991) was broken and withdrawn in 2001 
–  ISO 9796-2 was repaired in 2002 after a first attack in 1999 

•  New forgery attack on 9796-2 that works for very 
long RSA moduli (2048 bits) 
–  any160-bit hash function: 800$ on Amazon cloud 
–  the specific EMV variant: 45K$  

•  Not a practical threat to 750 million EMV cards since 
the attack requires a large number of chosen texts 
(600,000) 



Quantum computers? 

•  exponential parallelism 

•  Shor 1994: perfect for factoring 
•  But: can a quantum computer 

be built? 

 n coupled quantum bits 

2n degrees of freedom ! 



If a large quantum computer can 
be built... 

•  All schemes based on factoring (such as RSA) will 
be insecure 

•  Same for discrete log (ECC) 
•  Symmetric key sizes: x2 
•  Hash sizes: x1.5 (?)  

•  Alternatives: McEliece, NTRU,… 
•  So far it seems very hard to match performance of 

current systems while keeping the security level 
against conventional attacks 



Quantum computers  
•  Size of quantum 

computer does not 
(yet) matter! 

Photon machine gun, 
New scientist, Sept. 09 

•  More important is to keep 
a few qubits with high 
reliability for a 
sufficiently long time 
(decoherence) 
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How to encrypt with RSA? 

•  Assume that the RSA problem is hard 
•  … so a fortiori we assume that factoring is hard 

•  How to encrypt with RSA? 
– Hint: ensure that the plaintext is mapped to a 

random element of [0,n-1] and then apply the RSA 
Encryption Permutation (RSAEP) 
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How (not) to encrypt with RSA? 
•  Non-hybrid schemes 

–  RSA-PKCS-1v1_5 (RSA Laboratories, 1993) 
–  RSA-OAEP (Bellare-Rogaway, 1994) 
–  RSA-OAEP+ (Shoup, 2000) 
–  RSA-SAEP (Johnson et al., 2001) 
–  RSA-SAEP+ (Boneh, 2001)  

•  Hybrid schemes 
–  RSA-KEM (Zheng-Seberry, 1992) 

•  RSA-KEM-DEM (Shoup, 2001) 
•  RSA-REACT (Okamoto-Pointcheval, 2001) 

–  RSA-GEM (Coron et al., 2002)  
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RSA PKCS-1v1_5 

•  Introduced in 1993 in PKCS #1 v1.5 
•  De facto standard for RSA encryption and 

key transport 
– Appears in protocols such as TLS, S/MIME, ... 
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RSA-PKCS-1v1_5 Diagram   

EM 

message 

padding 

00 02 00 

Random 
nonzero 

bytes 

RSAEP C Public Key 
Source: 

RSA Labs 
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RSA-PKCS-1v1_5 Cryptanalysis 
•  Low-exponent RSA when very long messages are 

encrypted [Coppersmith+ ‘96/Coron ‘00] 
–  large parts of a plaintext is known or similar 

messages are encrypted with the same public 
key 

•  Chosen ciphertext attack [Bleichenbacher ’98] 
–  decryption oracle: ciphertext valid or not? 
–  1024-bit modulus: 1 million decryption queries 

•  These attacks are precluded by fixes in TLS 
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Bleichenbacher’s attack 
•  Goal: decrypt c 

–  choose random s, 0 < s < n 
–  computer c’ = c se mod n 
–  ask for decryption of c’: m’ 
–  compute m as m’/s mod n 

•  but  m’ does not have the right format! 
•  idea: try many random choices for s: 

–  if no error message is received, we know that  
 2B < (m s mod n) < 3B  

– with B = 28(k-2)  (k length in bytes of the modulus) 
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RSA-OAEP 

•  designers: Bellare and Rogaway 1993 
•  enhancements by Johnson and Matyas in 1996 

(“encoding parameters”) 
•  already widely adopted in standards 

–  IEEE P1363 draft 
– ANSI X9.44 draft 
– PKCS #1 v2.0  (PKCS #1 v2.1 draft) 
–  ISO 18033-2 working draft 2000 
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RSA-OAEP Diagram 

MGF 

MGF 

seed 

EM 

message 00 ... 01 pHash DB = 

00 

RSAEP C Public Key 

RNG 

Source: 
RSA Labs 
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RSA OAEP - security 

[BR’93] RSA-OAEP is IND-CCA2 secure under  
RSA assumption in ROM 

[FOPS 01] RSA-OAEP is IND-CCA2 secure under  
partial domain one-wayness RSA assumption in ROM 

for RSA: partial domain one-wayness⇔ one-wayness 

Shoup ‘00: the proof is wrong 

Reduction is very weak ROM assumption is questionable 
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RSA OAEP - security 

•  Improved chosen ciphertext attack [Manger, Crypto 
‘01] 

•  requires a few thousand queries (1.1 log2n) 
•  opponent needs oracle that tells whether there is an 

error in the integer-to-byte conversion or in the OAEP 
decoding 

•  overall conclusion: RSA Inc. is no longer 
recommending the use of RSA-OAEP 

if it’s provable secure, it probably isn’t  
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How to encrypt with RSA 

•  RSA-KEM 
–  encrypt 2 session keys with  RSA 
–  encrypt and MAC data with these 2 keys 

•  Recommended in NESSIE report (http://
www.cryptonessie.org) and to be included in ISO 
18033 

•  Similar problems for signatures:                           
ISO 9796-1 broken, PKCS#1 v1.0 questionable 
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Attack on PKCS #1 v1.5 implementations (1) 
[Bleichenbacher06] 

00 01 ff …  ff 00 H HashID Magic 

•  Consider RSA with public exponent 3  
•  For any hash value H, it is easy to compute a string 

“Magic” such that the above string is a perfect cube 
of 3072 bits 

•  Consequence: 
– One can sign any message (H) without knowing 

the private key 
– This signature works for any public key that is 

longer than 3072 bits 
•  Vulnerable: OpenSSL, Mozilla NSS, GnuTLS 
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Attack on PKCS #1 v1.5 implementations (2) 
[Bleichenbacher06] 

00 01 ff …  ff 00 H HashID Magic 

•  Fix 
– Write proper verification code (but the signer cannot 

know which code the verifier will use) 
– Use a public exponent that is at least 32 bits  
– Upgrade – finally – to RSA-PSS 
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Cryptographic algorithm selection 

•  Standards? 
•  Public domain versus proprietary 
•  Upgrades 
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Cryptographic standards 
•  Algorithms historically sensitive (e.g., GSM) 
•  Choices with little technical motivation (e.g., 

RC2 and MD2) 
•  Little or no coordination effort (even within 

IETF) 
•  Technically difficult 

A.S. Tanenbaum: “The nice thing about 
standards is there's so many to choose from”  
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Major Standardization Bodies in Cryptography 
•  International 

–  ISO and ISO/IEC International Organization for Standardization 
–  ITU: International Telecommunications Union 
–  IETF: Internet Engineering Task Force 
–  IEEE: Institute of Electrical and Electronic Engineers 

•  National 
–  ANSI: American National Standards Institute 
–  NIST: National Institute of Standards and Technology 

•  European 
–  CEN: Comité Européen de Normalisation 
–  ETSI: European Telecommunications Standards Institute 

•  Industry 
–  PKCS, SECG 
–  W3C, OASIS, Liberty Alliance, Wi-Fi Alliance, BioAPI, WS-Security, 

TCG 
–  GP, PC/SC, Open Card Framework, Multos 
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Independent evaluation efforts 

•  NIST (US) (1997-2001):  block cipher AES  for 
FIPS 197 (http://csrc.nist.gov/CryptoToolkit/aes/) 

•  CRYPTREC (Japan) (2000-2003): cryptographic 
algorithms and protocols for government use in Japan 
(http://www.ipa.go.jp/security) 

•  EU-funded IST-NESSIE Project (2000-2003): new 
cryptographic primitives based on an open evaluation 
procedure (http://www.cryptonessie.org) 

•  ECRYPT eSTREAM (2004-2007): stream cipher 
competition 
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Proprietary/secret algorithms 

•  No “free” public 
evaluations 

•  Risk of snake oil 
•  Cost of (re)-evaluation 

very high  
•  No economy of scale in 

implementations 
•  Reverse engineering  

•  Fewer problems with 
rumors and “New York 
Times” attacks 

•  Extra reaction time if 
problems 

•  Fewer problems with 
implementation attacks 

•  Can use crypto for IPR 
and licensing 
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Many insecure algorithms in use 

•  Do it yourself (snake oil) 
•  Export controls 
•  Increased computational power for attacks (64-bit 

keys are no longer adequate) 
•  Cryptanalysis progress - including errors in proofs 
•  Upgrading is often too hard by design 

–  cost issue 
–  backward compatibility  
–  version roll-back attacks 
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Upgrade problem 

•  GSM: A5/3 takes a 
long time 

•  Bluetooth: E0 
hardwired 

•  TCG: chip with fixed 
algorithms 

•  MD5 and SHA-1 
widely used 

•  Negotiable algorithms 
in SSH, TLS, IPsec,… 

•  But even then these 
protocols have 
problems getting rid of 
MD5/SHA-1 

Make sure that you do not use the same key with a weak 
and a strong variant (e.g. GSM A5/2 and A5/3) 
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And the good news 

•  Many secure and free solutions available 
today: AES, RSA,… 

•  With some reasonable confidence in secure 
•  Cost of strong crypto decreasing except for 

“niche applications” (ambient intelligence) 

In spite of all the problems, cryptography is 
certainly not the weakest link in our security chain 
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What to use (generic solutions) 

•  Authenticated encryption mode (OCB, CWC, 
CCM, or even GCM) with 3-key 3-DES or 
AES 

•  Hash functions: RIPEMD-160, SHA-256, 
SHA-512 or Whirlpool 

•  Public key encryption: RSA-KEM or ECIES 
•  Digital signatures: RSA-PSS or ECDSA 
•  Protocols: TLS, SSH, IKE(v2)  
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Secure implementations of 
cryptography 

•  Error messages and APIs (cf. supra) 
•  Side channels 

– Timing attacks 
– Power attacks 
– Acoustic attacks 
– Electromagnetic attacks 

•  Fault attacks 
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Power analysis tools for smart cards 

5V 

Ω	
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Software: constant time is crucial 

•  PIN verification 
•  Square and multiply for RSA 
•  Variable rotations in RC5 and RC6 
•  Swaps in RC4 
•  Problems with cache misses in ciphers with 

S-boxes such as DES and AES  
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PIN verification 

input (PIN_U[0..k-1],PIN[0..k-1]) 

i=0;  

while (i < k) do { 

if (PIN_U[i] != PIN[i]) return (0); 

i = i+1; 

} 

return(1); 

Problem? 
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Timing attack on RSA 
• “square and multiply” algorithm 
• exponent bits scanned from MSB to LSB (left to right) 

Example :  s = m9 = m1001b 

init (MSB 1)  s = m 

round 2 (bit 0)  s = m2 

round 1 (bit 0)  s = (m2 )2 = m4 

round 0 (bit 1)  s = (m4 )2 * m = m9 
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Cache attack on crypto algorithms with 
S-boxes (DES, AES,…) 

•  Cache misses influence execution time 
•  Uses HyperThreading to monitor the encrypting 

process in real time and observe its use of shared 
resources. 

•  [Tsunoo-Saito-Suzaki-Shigeri-Miyauchi 03] 
Cryptanalysis of DES implemented on computers 
with cache, CHES 2003, LNCS 2779, 62-76, 2003 

•  [Osvik-Shamir-Tromer 05] Cache Attacks and 
Countermeasures: the Case of AES, RSA CT 2006 

•  [Bernstein 05] Cache-timing attacks on AES 
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Implementation attacks (13 May ’08) 
 Debian-OpenSSL incident 

•  Weak key generation:  
 only 32K keys 

–   easy to generate all private keys 
–   collisions 

•   Between 13-17 May:         
 280 bad keys out of 40K 
 (0.6%) 

•  Revocation problematic 
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Implementation attacks 
cold boot attack 

•  Why break cryptography? Go for the key, stupid! 
•  Data reminence in DRAMs 

    Lest We Remember: Cold Boot Attacks on Encryption Keys [Halderman-
Schoen-Heninger-Clarkson-Paul- Calandrino-Feldman- Appelbaum-
Felten’08] 

–  Boot from USB device and dump RAM image 
–  Works for AES, RSA,… 
–  Products: BitLocker, FileVault, TrueCrypt, dm-crypt, loop-AES 

5 
sec 

30 
sec 

60 
sec 

5 
min 
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Implementation attacks  
cold boot attack (2) 

•  Countermeasures  
–  Overwrite keys in memory 
–  Shut down rather than sleep/hibernate 
–  Limit boot options (network, USB) 
–  resilient exposure cryptography (AONT) 
–  physical protection of DRAM 
–  encrypt in the disk controller 
–  new architecture 

•  Ineffective: trusted computing as implemented today 
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Some crypto libraries 

•  OpenSSL: http://www.openssl.org/ 
•  Cryptlib: http://www.cs.auckland.ac.nz/

~pgut001/cryptlib/ 
•  SSLeay: http://www2.psy.uq.edu.au/~ftp/Crypto/ 
•  IAIK Java: http://jce.iaik.tugraz.at/products/

index.php 
•  COSIC crypto library (contact B. Preneel) 
•  See also http://www.ssh.fi/support/cryptography/

online_resources/practical.html 
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Novel applications of cryptography 

•  Whitebox crypto 
•  SPAM fighting 
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Protection of software against 
whitebox attacks 

•  Software 
•  Confidential information 
•  Secret keys 
•  Proprietary code 

•  Software and content distribution 
•  White-box setting 

•  Complete accesss to implementation 
•  Decompilation, reverse engineering, … 



81 

Protection of software against 
whitebox attacks 

•   “sandboxing” 
 protect host against malware 

•   malicious hosts 
 protect software against malicious 
hosts 
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Techniques 

•  White-box cryptography 
•  Extra input and output coding of encryption  

•  Code obfuscation 
•  Obfuscate code and program flow 

•  Other techniques: 
•  Integrity checks + error detection 
  Tamper resistant software (TRS) 

•  Code encryption + ‘on-the-fly’ decryption 
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White Box Cryptography 

•  Mathematical technique to hide keys in code 

•  With: 
•  EK : encryption function, key K 
•  F : arbitrary input coding 
•  G : arbitrary output coding 
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Pro and Cons 
•  Unique object code  

–  Choose F and G 
–  Integrate key 

•  Protect key  
–  No function that 

computes EK  for an 
arbitrary key K 

•  Flexible 
•  Fast updates 

•  Increased memory 
–  Tables for input and 

output coding and for 
function 

•  Increased execution 
time 

•  Security: very strong 
attack model 
–  Trade-off with 

performance 
•  Fast key update open 

problem 
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Example 

•  DES 
–  16-round Feistel 
–  8 S-boxes 
–  56-bit key 

•  White-box DES 
–  General structure 
–  12 “T-boxes” 
–  Key built in code 
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The SPAM problem: it is about 
economics, stupid 

•  list of 107-108 “good” names 
•  cost per message: ~10-5 €; total cost 100-1000 € 
•  hit ratio: 10-6 to 10-4: 10-10000 responses 

•  Cost to society 
•  Ruining e-mail as communication tool 
•  Time and attention 
•  ISP fees  
•  Storage and bandwidth 
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  "The right to be left alone - the most 
comprehensive of rights, and the right 
most valued by civilized men." 

           - Supreme Court Justice Louis Brandeis 

AND… 
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Fighting SPAM 

•  Filtering 
•  Make sender pay 
•  Ephemeral email addresses 
•  Data/Sender Authentication 
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Fighting SPAM (2) 
•  Filtering 

  Everyone: text-based 
  Brightmail: decoys; rules updates 
 Microsoft Research: (seeded) trainable filters  
  SpamCloud: collaborative filtering 
  SpamCop, Osirusoft, etc: IP addresses, proxies, … 

•  Make Sender Pay 
  Computation (CPU and/or memory) 
 Human attention  
  Cash, bonds, stamps (PennyBlack) 
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Fighting SPAM (3) 
•  Ephemeral e-mail addresses 

–  E.g. SPA: Single Purpose Addresses 
•  Data/Sender authentication 

  Sign all emails 
  Sender Permitted From (SPF): whitelist mail senders 
  Sign domain names (Yahoo’s DomainKeys) 
  Authenticated mail: AMTP (TLS) 

Often bypass for friends on whitelist 
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Filtering: limitations 

•  Still high cost if too late in the chain 
•  Spammers generate more sophisticated 

emails… 
–  "Daphnia blue-crested fish cattle, darkorange 

fountain moss, beaverwood educating, eyeblinking 
advancing, dulltuned amazons...."  

–   FWD: Many On Stocks. Vali/u/m + V1codin+ ; V|
@GRa + /Xanax/ ; Pnter.m.in ? Som|a|  muKPs 
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Computational Approach 

•  If I don’t know the sender: 
– Prove sender spent 10 seconds CPU time,  
–   just for me, and just for this message 

•  Checking proof by receiver: 
–  automatically in the background 
–  very efficient 

•  All unsolicited mail treated equally 
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Point-to-Point Architecture 

(Ideal Message Flow) 
•  Single-pass “send-and-forget” 
•  Can augment with helper to handle slow machines 
•  Can add post office / pricing authority to handle money 

payments 
•  Time mostly used as nonce for avoiding replays (cache tags, 

discard duplicates; time controls size of cache) 

Sender client 

S 

Recipient client 

R 

m,  f(S,R,t,nonce) 
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Economics 

•  10 seconds CPU cost a few hundreds of a cent 
•  (80,000 s/day) / (10s/message) = 8,000 msgs/day 
•  Hotmail’s billion daily spams: 

–  125,000 CPUs 
–  Up front capital cost just for hardware: $150 million 

•  The spammers can’t afford it. 
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Cryptographic Puzzles  

•  Hard to compute; f(S,R,t,nonce) can’t be amortized 
•  lots of work for the sender 

•  Easy to check “z = f(S,R,t,nonce)” 
•  little work for receiver 

•  Parameterized to scale with Moore's Law 
•  easy to exponentially increase computational cost, while 

barely increasing checking cost 
•  Can be based on (carefully) weakened signature 

schemes, hash collisions 
•  Can arrange a “shortcut” for post office 
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Idea: replace CPU by memory 

•  CPU speeds vary widely across machines, but memory 
latencies vary much less (20-100 vs 2-6) 
  33 MHz PDA vs. 3 GHz PC 

•  design a puzzle leading to a large number of cache 
misses 

•  Concrete schemes: [ABMW02] and [DGN03] 
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Easy Functions  
[ABMW02]  

•  f: n bits to n bits, easy 
•  Given xk ∈ range(f(k)), find a 

pre-image with certain 
properties  

•  Hope: best solved by building 
table for f-1 and working back 
from xk 

•  Choose n=22 so f -1 fits in 
small memory, but not in 
cache 

•  Optimism: xk is root of tree of 
expected size k2 
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Social Issues 

•  Who chooses f? 
– One global f? Who sets the price? 
– Autonomously chosen f’s? 

•  How is f distributed (ultimately)? 
– Global f built into all mail clients? (1-pass) 
– Directory?  Query-Response? (3-pass) 
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Technical Issues 
•  Distribution lists 
•  Awkward introductory period 

– Old versions of mail programs; bounces 

•  Very slow/small-memory machines 
– Can implement “post office” (CPU),  but:  
– Who gets to be the Post Office?  Trust? 

•  Cache Thrashing (memory-bound) 
•  The Subverters or Zombies 
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Conclusions: cryptography 

•  Can only move and simplify your problems 
•  Solid results, but still relying on a large 

number of unproven assumptions and beliefs 
•  Not the bottleneck or problem in most 

security systems 

•  To paraphrase Laotse, you cannot create 
trust with cryptography, no matter how much 
cryptography you use         -- Jon Callas.  
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Conclusions (2): cryptography 

•  Leave it to the experts 
•  Do not do this at home 
•  Make sure you can upgrade 
•  Implementing it correctly is hard 

•  Secure computation very challenging and 
promising: reduce trust in individual building 
blocks 
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Selected books on cryptology 
• D. Stinson, Cryptography: Theory and Practice, CRC 

Press, 3rd Ed., 2005. Solid introduction, but only for the 
mathematically inclined.  

• A.J. Menezes, P.C. van Oorschot, S.A. Vanstone, 
Handbook of Applied Cryptography, CRC Press, 
1997.  The bible of modern cryptography. Thorough and 
complete reference work – not suited as a first text book.  
Freely available at http://www.cacr.math.uwaterloo.ca/hac  

• N. Smart, Cryptography, An Introduction: 3rd Ed., 
2008. Solid and up to date but on the mathematical side. 
Freely available at http://www.cs.bris.ac.uk/~nigel/Crypto_Book/ 

•  B. Schneier, Applied Cryptography, Wiley, 1996. 
Widely popular and very accessible – make sure you get the 
errata. 

• Other authors: Johannes Buchmann, Serge Vaudenay 
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